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In this paper we discuss ‘exotic’ rotationally symmetric containers that  admit an 
entire continuum of distinct equilibrium capillary free surfaces. The paper extends 
earlier work to a larger class of parameters and clarifies and simplifies the governing 
differential equations, while expressing them in a parametric form appropriate for 
numerical integration. A unified presentation suitable for both zero and non-zero 
gravity is given. Solutions for the container shapes are depicted graphically along 
with members of the free-surface continuum, and comments are given concerning 
possible physical experiments. 

1. Introduction 
The free surface of a liquid that partly fills a container under the action of surface 

and gravitational forces may assume, in general, one of several possible equilibrium 
configurations. An example for which only one configuration is possible is a vertical 
homogeneous cylindrical container of general cross-section, with gravity either 
absent or directed downward into the liquid; if the liquid covers the base, then the 
surface is determined uniquely by its contact angle and the liquid volume (Vogel 
1988). Examples of other containers can be given for which there exist two or more 
distinct equilibrium configurations. Our interest here is in certain container shapes 
having the striking property that there is an entire continuum of equilibrium liquid 
configurations. 

More specifically, there exist rotationally symmetric containers that permit a 
continuum of distinct, rotationally symmetric equilibrium free surfaces, all enclosing 
the same liquid volume and having the same mechanical energy and contact angle. 
The special case of zero gravity and contact angle in is studied in Gulliver & 
Hildebrandt (1986), where the authors derive a closed-form solution ; the general case 
is studicd in Finn (1988). It is shown further in Finn (1988) and Concus & Finn ( 1989) 
that the families of symmetric solution surfaces are unstable, in that certain 
asymmetric deformations yield surfaces with lower energy. I n  fact, i t  is possible for 
such ‘exotic ’ rotationally symmetric containers to have energy-minimizing liquid 
configurations that are not symmetric. 

In the present study we extend to  a larger range of parameters, and in a form 
suitable for numerical integration, the equations given in Finn (1988) describing the 
containers. Concurrently, the equations are clarified and simplified, and a unified 
presentation is given suitable for both zero and non-zero gravity. The containers are 
depicted graphically for a range of gravity accelerations and contact angles of 
physical interest, along with members of the families of symmetric equilibrium free 
surfaces. 
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2. Rotationally symmetric capillary surfaces 
Consider a rotationally symmetric container, partly filled with liquid, oriented 

with its axis of symmetry parallel to a uniform downward-acting gravitational field. 
A rotationally symmetric equilibrium free-surface of the liquid (or interface between 
two immiscible liquids) satisfies 

I d  
--(rsin$) = Bu+h, 
r dr  

where r is the radial coordinate, u is the height of the surface, $ is the angle between 
the horizontal and a meridian of the surface, B is the Bond number, and h is a 
parameter that  is determined by the geometry and volume constraint (Finn 1986, 
Chaps. 2, 3). Here we have taken the spatial variables to be normalized with respect 
to a characteristic dimension 1 of the container, so that lr and lu are the physical 
lengths. The non-dimensional parameter B is given by B = pg12/u, where p is the 
density of the liquid (minus the density of the vapour or of the other liquid phase 
adjoining the free surface), g is the gravitational acceleration (positive downward), 
and CT is the interfacial surface tension. The free surface is to meet the container in 
a prescribed contact angle y ,  0 < y < n, measured within the liquid (see figure 1). We 
consider the case B 2 0. 

As discussed in Finn (1986, 1988), the totality of solutions of (1) defined in a 
deleted neighbourhood of r = 0 is described by a one-parameter family of curves. For 
convenience in subsequent numerical integration of (l), we take u = 0 as the initial 
height at r = 0 (where also $ = 0 ) ,  corresponding to which the parameter h is twice 
the curvature of the meridian a t  the initial umbilical point r = 0, u = 0. We include 
here, as well as the values 1$1 < in, the values in < l$l < n, which were not considered 
in Finn (1988). 

If A = 0, then the solution curve is u = 0. As shown in Finn (1986), if h > 0, then 
on any solution curve the curvature k = (d/dr) (sin $) remains positive, increasing 
monotonically with $ ; correspondingly, u increases monotonically as $ varies from 0 
to n. Similarly, if A < 0, then the curvature k remains negative, decreasing 
monotonically, along with u, as $ decreases from 0 to -n. 

If r = R > 0 and 4 = Y are prescribed terminal values of r and $, then the 
parameter h is determined uniquely by these values. We may denote the unique 
solution surface as described parametrically in terms of $ in the region of interest 

(2) 

1 ~ 1  < 7C by 
r = p($ ; R ,  Y)’) 
2 = u($;R,  Y). 

The corresponding parametric representation of (1)  is 

sin $ 
P 

where k = Bu--+h 

is the curvature of the solution curve. The initial and 

p = u = O  at $ = O ,  

p = R  at $ = Y .  

(4) 

terminal conditions become 

( 5 )  
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t 

FIGURE 1.  Running coordinate y+ along the free surface, and contact angle y .  

If Y = 0, then the solution of ( 1 )  satisfying the prescribed terminal conditions is 
u = 0, for which k = 0, and the parametric representation (3) is unsuitable. 
Otherwise, as discussed above, k cannot vanish and the representation (3) is 
appropriate. 

The terminal values R and Y for our numerical integration will be those a t  which 
the solution curve meets the container. So that the curve corresponds to  the 
coordinates in which the container is expressed, we shall in what follows displace it 
vertically, adding a constant h to u, by specifying the value of the displaced surface 
height u + h a t  the end point r = R, $ = Y. The displaced height remains a solution 
to (3) (or (l)) ,  with h-Bh replacing A, and the condition $ =  Y a t  r =  R is 
unchanged. 

3. Determination of the containers 
As in Finn (1988) we seek a rotationally symmetric container given by r = f(z) 

(which it will be convenient later to describe also in parametric form). The container 
is to be such that a family of rotationally symmetric interfaces obtained from 
solutions to  (l) ,  all having the same contact angle, enclose with it the same liquid 
volume. Let (R = f(Z), 2) denote a point on the container meridian, and a t  (R, 2) let 
the value of $ for the interface solution meridian intersecting the container there be 
~ = Y. Then the volume V enclosed between the free surface and the container is 
given by 

27c 
B 

V = -[-(Bu+A)l$2+Rsin q + n  

as derived in Finn (1988, equations (9) and (10)) using integration of the Bu term in 
( 1 )  to  obtain the volume below the free surface. The equations in Finn (1988) were 
derived with reference only to the case lq < in;  however, it can be shown that the 
expression (6) for V holds over the entire range -7c c Y c x .  By using the 
asymptotic representation for h near B = 0, 

h = (2/R)sin Y + O ( B ) ,  B+O, 

one obtains from the results in Concus (1968) that  the expression (6) for V has the 
limit a t  B = 0 (for which value u describes a circular arc of radius R/sin Y)  

- cosec Y + Q cosec3 Y( 1 - C O S ~  !P) + 7c R2dz. I S  1 -cos Y 
sin Y 
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' Container 

FIGURE 2. Running coordinate q5 of container, and contact condition. 

This expression can be rearranged and simplified to 

R2 dz. 
sin Y(2 + cos Y )  

VI,,, = -xR3 (7 )  

This connects the general expression (6) with the expression derived explicitly for 
B = 0 as (7) in Gulliver & Hildebrandt (1986) and Finn (1988). 

We turn now to a parametric representation of the container given by r = R($), 
z = Z ( $ ) ,  where $ is the angle between the horizontal and a meridian of the container, 
cot $ = df/dr. The condition that a solution surface meridian meet the container 
with prescribed contact angle y is that 

$ - Y = y  (8) 
at  the point of intersection, see figure 2. 

The solution surface p ( $ ;  R, Y ) ,  u($; R, Y ) ,  which attains the values p = R, $ = Y 
at  the end point, must be displaced vertically upward a distance h = Z-u( Y ;  R,  Y )  
to pass through the point (R, 2) (cf. the last paragraph of $2). Thus the displaced free- 
surface solution intersecting the container a t  ( R , Z )  with angle Y is given by 

u ( ~ ; R ,  Y ) + Z - u ( Y ; R ,  Y) .  

As the condition for constant enclosed volume, we set dV/d$ = 0, obtained by 
differentiation of (6). Let 

U(R, Y )  = U (  Y ;  R,  Y )  

denote the value of u a t  the container intersection and A(R, Y)  the corresponding 
value of the parameter A. We shall denote partial differentiation of U or h with 
respect to R or Y by the corresponding subscript. Finally, let 

sin Y 
R 

K = BU-- + A  

denote the value at the container intersection of the meridional curvature k of the 
solution surface, cf. (4). Then, using dY/d+ = 1, we obtain for the condition of 
constant enclosed volume : 

where 
2 cos Y-BR(BUy+Ay) 

B & =  
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The use of a parametric form in terms of the parameter $ for deriving (9), ( lo) ,  and 
subsequent equations from (6) and (8) simplifies the corresponding derivation 
required in Finn (1988) for the non-parametric form with r as independent variable. 

The partial derivatives of U with respect to R and Y are related, since 
du/dr = tan ?,h along a solution curve. One has 

d Y  
tan Y = U,+ U,-,  dR 

which yields, using (3), 
sin Y = U, cos Y+ KU,. 

A, cos Y+ Kh, = 0. Similarly, 

Using these relationships, one obtains from (9) the equation 

dR dZ 
Qcos Y-(KQ+Rsin Y)-+Rcos$- = 0. 

d$ d$ 

Finally, one can write the above equation in parametric form as 

(14) 
dR cos$ dZ sin$ 
d$- k, ’ d$-  k, ’ 

where k,, the meridional curvature of the container, is given by 

KQ cos $ - R sin y 
Qcos Y 

k, = 

The system of equations (14) is the one that we wish to  solve to determine the desired 
container shapes. 

4. Properties of container equations 
For small values of B, one can use the asymptotic properties of the free-surface 

meridian given in Concus (1968, $3) to obtain from (10) the asymptotic relationship 

+O(B), B+O. 
R2 Q = -  

( l+cos u)z 

Thus Q has a limit a t  B = 0 (for all Y, - x  < Y < x). The resulting limit of (13) can 
be shown to correspond to  the governing equations derived separately for the B = 0 
case in Gulliver & Hildebrandt (1986) and Finn (1988), thus unifying the cases for 
zero and non-zero B. 

The suggestion of singular behaviour a t  Y = in, occasioned by the explicit 
appearance of cos Y in the denominator of (15), is illusory and can be removed by 
using (8),  (lo), ( l l ) ,  and (12). One obtains 

+Rcos Y+Rsin Y 

This form is more suitable for computation near Y = +x than is (15). 
In  the numerical integration of (14), which is discussed in the following section, we 

shall take the initial point to  lie on the planar solution surface u = 0 of ( l ) ,  
corresponding to Y = 0, for which K = 0. From (15) one obtains that k, = 
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(4/R)siny > 0 a t  the initial point, since 0 < y < x .  Thus the system (14) is well- 
behaved at  the initial point. Nearby, for Iv small, one obtains, using the asymptotic 
representation of the free-surface meridian (Concus 1968), that 

One can show easily, using computer representations for the modified Bessel 
functions I, and I,, that k, remains positive away from the initial point. The 
computed solutions of (14) for the examples we considered indicate that k, is positive 
over the entire range 0 < < x ,  increasing with 6 ,  and hence that integration of the 
parametric form (14) can be carried out. 

< in:. Our numerical 
solutions for the cases we have considered indicate that Q remains negative and 
decreases as Y increases through the range - x  < Y < x .  

It is shown in Finn (1988) that  Q < 0 holds for the case I 

5. Numerical solution 
Numerical solutions of (14) were calculated for several values of contact angle y 

and Bond number B. The initial values for the integration were R = 1, Z = 0, q5 = y,  
corresponding to the solution surface u = 0 of ( l ) ,  for which 1c. = 0. Equation (14) was 
integrated forward in q5 to obtain the upper portion of the container y < q5 < n: and 
backward in q5 for the lower portion 0 6 q5 < y .  The integration was accomplished by 
a variable-order variable-step Adams method using subroutine D02CBF of the NAG 
program library. To evaluate the coefficients a t  each integration step, a boundary- 
value problem (3), ( 5 )  for the liquid free surface was solved by a shooting method 
using NAG library subroutine DOBHBF. 

The necessary quantities in (15) at  each integration step were obtained by solving 

P COSII. 
numerically the system :[ ;] = [ si;.]; 
where k is given by (4). A t  the initial point s = 0, at  which p = u = + = 0, k has the 
limiting value +(Bu+h). The system (16) is equivalent to the system (3), where now 
arclength s is the independent variable instead of $. In  return for the extra 
complication of treating a system of three equations rather than two, more robust 
behaviour was obtained in calculating solutions near the planar one u = 0, k = 0, 
with better error control using the automatic procedure built into the integration 
subroutine. Appended to the system (16) were the equations for the partial 
derivatives with respect to R, with @ and Y fixed, 



Exotic containers for 

1.0 , , , 

0 0.5 1 .o 

0.5 

Z - 
a 

0 

B = l O  . 
a = 1.150 

-0.5 
0 0.5 1 .o 

r l a  

capillary surfaces 

1 .o 

0.5 - 

0 . . . . . . . . . . . . . . . 

a = 1.231 

-0.5 ' ' ' ' 

0 0.5 1 .o 

0.5 1 

389 

FIGURE 3. Meridian of container (solid curve) for contact angle 30" and several Bond numbers 
showing meridians of some symmetric equilibrium solution surfaces (dashed curves), all having the 
same contact angle and energy, and enclosing the same volume of liquid. 

The boundary conditions for the integration for the complete system are 

p = u = $ = p R  = u, = 0 a t  s = 0, 

p = R ,  $ =  Y, p R = l  a t  s = S .  

At the initial point s = 0, k, has the limiting value ;(Bu,+A,). These equations 
determine the four quantities U = u(S), U,  = uR(S), A ,  and A, required in (15). The 
unknown parameter S ,  the total arclength of the interface, is obtained as part of the 
numerical integration. 

To start the integration from the initial planar interface u = 0, the asymptotic 
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FIGURE 4. Meridian of container (solid curve) for contact angle 60' and several Bond numbers 
showing meridians of some symmetric equilibrium solution surfaces (dashed curves), all having the 
same contact angle and energy, and enclosing the same volume of liquid. 

form for small $ given in Concus (1968) was used to provide initial values for the 
Newton iterates for A, and uR(S), based on the Y-derivatives 
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FIQURE 5. Meridian of container (solid curve) for contact angle 90" and several Bond numbers 
showing meridians of some symmetric equilibrium solution surfaces (dashed curves), all having the 
same contact angle and energy, and enclosing the same volume of liquid. 

Subsequently the values a t  the most recent previous integration point of $ were used 
as the initial ones. 

In figures 3 , 4 , 5  the solutions calculated for y = 30°, 60", 90" and B = 0, 1 ,  10, 100 
are depicted. (The solutions for the supplementary non-wetting cases y = 120" and 
y = 150" can be obtained by reflecting, respectively, the y = 60" and y = 30" ones 
about z = 0.) The container meridians are shown as solid curves. The dashed curves 
depict meridians of members of the family of symmetric equilibrium free surfaces, all 
enclosing the same volume, having the same mechanical energy, and meeting the 
container with the same contact angle. The plotted free-surface curves include the 
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FIGURE 6. Container for contact angle 60" and B = 0 with top and bottom right-circular cylindrical 
extensions and disk ends. The dashed line indicates the fill level corresponding to a planar 
equilibrium interface. 

horizontal, planar member of the family and are given for increments of 30" in Y. For 
y = 0" the free surfaces and container would coincide. For some cases, as depicted for 
the 30" contact-angle curves, only an appropriate portion of the container should be 
used, consistent with the implicit physical requirement that the free surfaces lie 
interior to the container, intersecting it only a t  the final integration point. In all cases 
a top and bottom of the container could be connected to the symmetry axis as desired 
(provided the connecting portions to not encroach on the free surfaces). Figure 6 
illustrates a container consisting of the entire computed solution for B = 0 shown in 
figure 4 connected to circular cylindrical extensions above and below, with disk ends. 
By joining only a small portion near # = $ of a computed container shape to circular 
cylindrical extensions, one obtains a container that is as close as desired to being a 
circular cylinder. It would still admit an entire continuum of equilibrium free 
surfaces, whereas for prescribed contact angle and liquid volume the circular cylinder 
admits only the unique, symmetric equilibrium surface of minimizing energy if the 
boundary of the free surface lies entirely on the cylindrical walls. 

I n  the figures the containers are scaled to have maximum radius of unity. Since the 
Bond number B for the numerical integration is based on a characteristic length 1 
equal to the radius of the flat interface (i.e. R = l) ,  the scaling in the figures 
corresponds to a scaling of Bond number as well. The scaling factor a is given on each 
figure. The Bond number based on the maximum-radius characteristic length is Ba2. 

Generally, the figures indicate that as B increases, the containers become more 
eccentric, and the corresponding solution surface family more compressed. A low- 
gravity environment would have substantial advantages for carrying out related 
physical experiments, since an adequately large lengthscale for accurate observation 
and measurement would thereby be permitted. 

An initial step in visualizing the physical behaviour of liquid in these containers was 
taken by M. Weislogel a t  the NASA Lewis Research Center Zero Gravity Facility; 
a space experiment, being designed jointly with M. Weislogel, is planned for the 
NASA United States Microgravity Laboratory flight (USML-1) scheduled for 1992. 
Of particular interest for physical experiments is the property shown in Finn (1988) 
and Concus & Finn (1989) that a configuration of lower mechanical energy can be 
obtained by a non-rotationally symmetric perturbation of the planar member of the 
family of solution surfaces. Thus, under the idealized Young-Laplace equilibrium 
contact-angle conditions embodied by (8), if surface friction effects were absent, the 
symmetric equilibrium free surfaces, as depicted here, would not be observed 
physically in the containers. 
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Postscript 
The ensuing reflections evolved in response to  a referee's request to  point out that 

an asymmetric minimizer also would not be unique, as it could be rotated rigidly to 
obtain other equivalent surfaces. In  fact, our studies of capillary surfaces over the 
past decades have led us to the conviction that uniqueness is the (perhaps rare) 
exception rather than the rule. The only situation in which interface uniqueness has 
been completely established thus far is for a vertical cylindrical container (of possibly 
non-circular section) in a gravity field that is either zero or directed toward the 
liquid, with the liquid covering the base. It is perhaps the everyday familiarity of this 
situation that has led investigators to overlook the very different kinds of behaviour 
that may otherwise be encountered. We may consider, for example, the two 
uniqueness theorems of the second author : (i) for a sessile drop on a horizontal plane 
in a vertical (or null) gravity field (Pacijic J .  Maths vol. 88 (1980), pp. 541-587) and 
(ii) for liquid partially filling (or lying on) a sphere in zero gravity (Finn 1988). These 
results do provide significant information within the context of competing surfaces 
considered. However, in the first case, uniqueness holds only modulo horizontal 
translations of the drop, while in the second case uniqueness can be lost not only via 
rotation of the sphere, but also if the topological type of the interface is allowed to 
change (e.g. from a disk-like to  a tube-like surface). Receqt unpublished work by 
J. Harris suggests that  a small non-uniformity in the gravity field may lead to 
non-uniqueness of the sessile drop. Even in the case of the vertical cylinder, the 
uniqueness statement can be deceptive. If, for example, the cylinder has a horizontal 
base and y = go", then a small amount of liquid might appear as a horizontal 
interface covering the base, as a sessile drop on the base, or in other configurations. 
A more general form of this example, with a conical base, is described in Finn (1988). 
Intuitive extrapolation from the cylindrical case might suggest that a convex bowl 
as support surface should be a stabler configuration than a concave one. But the 
support surfaces constructed in the present work and yielding non-uniqueness (and 
instability) among symmetric surfaces are convex, while it is shown in Finn (1988) 
that a symmetric concave support surface yields uniqueness a t  least among 
symmetric interfaces. 

In the face of such seeming anomaly, it has to  be pointed out that the uniqueness 
theorem for capillary surfaces in a cylinder holds with notably greater strength than 
is usual for physical problems; in fact, the solution for that case is completely 
determined even if the contact-angle boundary data are ignored on a set of boundary 
points of Hausdorff measure zero (for example, a t  a countable number of corner 
points). Such a statement would be false, e.g. for the Laplace equation V2u = 0. 
Thus, it can happen that when uniqueness does hold, it holds with a vengeance. This 
unusual uniqueness property is closely related to  a discontinuous dependence of the 
solution on the data, see Finn (1986, Chap. 5). 

Finally, it should be remarked that even for a cylinder with circular section, 
uniqueness holds only in a restricted sense, as the free surface could be rotated about 
the symmetry axis (through an angle =+ 2nn) giving another surface. Although this 
surface would be the same as the first in the sense of point sets, if fluid particlcs on 
the surface had been marked, it would be physically distinct from the first. From 
such a physical point of view, any motion that leaves the surface invariant would 
yield a new solution with the same energy. The circumstance that under reasonably 
ideal isothermal conditions the surface interface (and, more generally, fluid mass) 
remains stable and not in constant macroscopic motion has to be attributed to 
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frictional (viscous) resistance within the fluid. These last considerations ignore, 
of course, molecular motions; they are based on the hypothesis of continuous 
distribution of matter that underlies the derivation of the equations we have studied. 
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